1. null or NaN or missing data check

   df.isnull().sum()

 

2. drop data based on X-axis

   df.dropna(axis=0)

 

3. drop data in terms of Y-axis

   df.dropna(axis=1)

 

4. drop data included all NaN in Columns

   df.dropna(how='all')

 

5. drop rows that have fewer than 4 values

   df.dropna(thresh=4)

 

6. drop data in specific columns

   df.dropna(subset=['C'])

 

 

'데이터분석 > pandas' 카테고리의 다른 글

encoding for class labels  (0) 2023.07.03
imputing missing values in pandas  (0) 2023.07.03
data cleaning  (0) 2019.11.06
nump 사용  (0) 2019.10.31
data crawling  (0) 2019.10.28

+ Recent posts