1. test 프로그램
1) mapper
hdfs 파일시스템안에 데이터 파일을 읽어 단어별로 분리한후 해당 단어별(key)로 1값(value) 부여
import org.apache.Hadoop.io.IntWritable;
import org.apache.Hadoop.io.LongWritable;
import org.apache.Hadoop.io.Text;
import org.apache.Hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
public static final IntWritable ONE = new IntWritable(1);
@Override
protected void map(LongWritable offset, Text line, Context context)
throws IOException, InterruptedException {
String[] result = line.toString().split(" ");
for (String word : result) {
context.write(new Text(word), ONE);
}
}
}
2) reducer
각 key별로 분류된 데이터를 읽어 key별 count 수행한후 저장
import org.apache.Hadoop.io.IntWritable;
import org.apache.Hadoop.io.Text;
import org.apache.Hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
protected void reduce(Text key, Iterable values, Context context)
throws IOException, InterruptedException {
int count = 0;
for (IntWritable current : values) {
count += current.get();
}
context.write(key, new IntWritable(count));
}
}
3) Driver
실행하기 위해 Driver 코드를 작성하여 mapper와 reducer 지정, input 파일과 output 디렉토리 지정
import org.apache.Hadoop.conf.Configuration;
import org.apache.Hadoop.conf.Configured;
import org.apache.Hadoop.fs.Path;
import org.apache.Hadoop.io.IntWritable;
import org.apache.Hadoop.io.Text;
import org.apache.Hadoop.mapreduce.Job;
import org.apache.Hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.Hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.Hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.Hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.Hadoop.util.Tool;
import org.apache.Hadoop.util.ToolRunner;
public class TestDriver extends Configured implements Tool {
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), (Tool) new TestDriver(), args);
System.exit(res);
}
public int run(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "WordCount");
job.setJarByClass(TestDriver.class);
if (args.length < 2) {
System.out.println("Jar requires 2 paramaters : \""
+ job.getJar()
+ " input_path output_path");
return 1;
}
job.setMapperClass(WordcountMapper.class);
job.setReducerClass(WordcountReducer.class);
job.setCombinerClass(WordcountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
Path filePath = new Path(args[0]);
FileInputFormat.setInputPaths(job, filePath);
Path outputPath = new Path(args[1]);
FileOutputFormat.setOutputPath(job, outputPath);
job.waitForCompletion(true);
return 0;
}
}
4) compile
export CLASSPATH="하둡 라이브러리 패스지정"
(ex : export CLASSPATH=`hadoop classpath` )
javac -d . WordcountMapper.java WordcountReducer.java TestDriver.java
5) jar 생성
vim Manifest.txt
>> Main-Class: TestDriver
jar cfm test.jar Manifest.txt *.class
(packge 정의시(test?) : jar cfm test.jar Manifest.txt test)
2. task 실행
test.jar 파일안에 map/reduce 클래스 수행 (input : /tmp/input_data, output 위치 : /tmp/output)
$HADOOP_HOME/bin/hadoop jar test.jar test.TestDriver /tmp/input_data /tmp/output
'NoSQL > Hadoop' 카테고리의 다른 글
map/reduce optimization (0) | 2019.07.17 |
---|---|
hadoop os tunning (0) | 2019.07.16 |
yarn admin (0) | 2019.07.09 |
yarn log (0) | 2019.07.09 |
yarn command (0) | 2019.07.09 |